

10AL51

Fifth Semester B.E. Degree Examination, June / July 2014 Management and Entrepreneurship

Time: 3 hrs .
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. What are the characteristics of management? Explain.
(10 Marks)
b. Distinguish between management and administration.
(05 Marks)
c. List the contribution of F.B. Gilberth.
(05 Marks)
2 a. What are the characteristics of planning? Briefly explain cach component.
(10 Marks)
b. What are the advantages of objectives?
(05 Marks)
c. What are the important characteristics of decision making?
(05 Marks)
3 a. What are the principles of organization? Explain each in brief.
(10 Marks)
b. What are the sources of recruitment?
(05 Marks)
c. What are the main features of staffing?
(05 Marks)
4 a. Define leadership. What are the basic styles of leadership? Explain each in brief.
(10 Marks)
b. What arc the features of motivation?
(05 Marks)
c. Explain McGregor's theory X and theory Y.
(05 Marks)

PART - B

5 a. What are the major characteristics of an entrepreneur? Explain each in bricf.
(07 Marks)
b. How does an entrepreneur differ from a manager? Explain. (06 Marks)
c. In the Indian context, explain the specific role that an entrepreneur has fulfilled in the economic development of the country.
(07 Marks)
6 a. What are the salient features of new small enterprise policy 1991?
(07 Marks)
b. What are the characteristics of SSI?
(06 Marks)
c. What are the major effects of WTO/GATT on Indian SSI?
(07 Marks)
7 a. Explain DIC single window agency.
(07 Marks)
b. What are the objectives and functions of SIDBI? (06 Marks)
c. What are the functions of KSFC and TECSOK?

8 a. Explain the various guidelines provided by the planning commission for preparation of projcet report.
(07 Marks)
b. What arc the major errors generally made by entrepreneurs during formulating project report?
(06 Marks)
c. What are the differences between PERT and CPM?
(07 Marks)

10EC52

Fifth Semester B.E. Degree Examination, June/July 2014 Digital Signal Processing

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of normalized Chebyshev and Butterworth tables are not allowed.

PART - A

1 a. Prove that the sampling of DTFT of a sequence $x(n)$ result in N-point DFT.
(07 Marks)
b. If $w(n)=\frac{1}{2}+\frac{1}{2} \cos \left[\frac{2 \pi}{N}\left(n-\frac{N}{2}\right)\right]$, what is the DFT of the window sequence $y(n)=x(n) \cdot w(n)$? Keep the answer in terms of $X(k)$.
(07 Marks)
c. Compute the inverse DFT of the sequence $X(k)=\left\{\begin{array}{l}2 \\ \uparrow\end{array}, 1+j, 0,1-j\right\}$

2 a. Consider the following 8-point sequences defined for $0 \leq n \leq 7$.
(i) $\mathrm{x}_{1}(\mathrm{n})=\{1,1,1,0,0,0,1,1\}$
(ii) $\mathrm{x}_{2}(\mathrm{n})=\{1,1,0,0,0,0,-1,-1\}$

Which sequences have a real 8 -point DFT? Which sequences have an imaginary valued 8 -point DFT?
(05 Marks)
b. Two 8-point sequences $\mathrm{x}_{1}(\mathrm{n})$ and $\mathrm{x}_{2}(\mathrm{n})$ are as shown in Fig.Q2(b). Determine the relation between their DFTs $X_{1}(k)$ and $X_{2}(k)$
(05 Marks)

Fig.Q2(b)
c. Given the two sequences $x(n)=\alpha^{n}$ and $h(n)=\beta^{n}$ of length $=4$, determine

$$
y(n)=x(n) \circledast_{4} h(n)
$$

(05 Marks)
d. For DFT pair shown, compute the values of the boxed quantities using appropriate properties.

$$
\begin{equation*}
\underset{\uparrow}{\{\mathrm{x}(0)}, 1,2,2,3,3\} \underset{\uparrow}{\stackrel{\mathrm{DFF}}{\longleftrightarrow}}\{\underset{\mathrm{X}(1)}{ },-1.5+\mathrm{j} 0.866,0, \mathrm{X}(4)-1.5-\mathrm{j} 2.598\} \tag{05Marks}
\end{equation*}
$$

3 a. What is sectional convolution? Explain any one of them.
(08 Marks)
b. An FIR filter has the unit impulse response $h(n)=\{1,2\}$. Determine the output sequence in rcsponse to the input sequence.

$$
x(n)=\{1,-1,2,1,2,-1,1,3\}
$$

using over lap-add technique. Use 5 -point circular convolution.
(07 Marks)
c. Calculate the percentage saving in calculations in a 512 -point radix- 2 FFT, when compared to direct DFT.
(05 Marks)
4 a. Determine 8-point DFT of a continuous time signal $\mathrm{x}(\mathrm{t})=\sin (2 \pi \mathrm{ft})$ with $\mathrm{f}=50 \mathrm{~Hz}$. Use DIFFFT algorithm.
b. What is Geortzel algorithm? Obtain DF-11 realization of two pole resonator for computing the DFT.
c. What are the differences and similarities between DIF-FFT and DIT-FFT algorithm?
(04 Marks)

PART - B

5 a. Determinc the system function $\mathrm{H}_{\mathrm{a}}(\mathrm{s})$ that exhibits Chebyshev characteristics for the following filtcr specifications:
(i) Ripple of 0.5 dB in band $|\Omega| \leq \mathrm{I}$
(ii) At $\Omega=3 \mathrm{rad} / \mathrm{s}$, amplitude is down by 30 dB .
(12 Marks)
b. Derive the expression of order and cutoff frequency of a Butterworth low pass filter.
(08 Marks)
6 a. Obtain DF-I and DF-II structure of the filter is given by

$$
y(n)=2 b \cos \omega_{0} y(n-1)-b^{2} y(n-2)+x(n)-b \cos \omega_{0} x(n-1)
$$

(07 Marks)
b. Obtain the cascade and parallel realization of the system

$$
H(z) \frac{1+\frac{1}{3} z^{-1}}{\left(1-\frac{1}{5} z^{-1}\right)\left(1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}\right)}
$$

(08 Marks)
c. What are features of FIR lattice structures?
(05 Marks)
7 a. Compare the rectangular window and hamming window.
(04 Marks)
b. A low pass filter has the desired response as given by

$$
\mathrm{H}_{\mathrm{d}}\left(\mathrm{c}^{\mathrm{c}}\right)=\left\{\begin{array}{cl}
\mathrm{e}^{-\mathrm{jw} w}, & 0 \leq w \leq \frac{\pi}{2} \\
0, & \frac{\pi}{2} \leq w \leq \pi
\end{array}\right.
$$

Determine the filter coefficients $h(n)$ for $M=7$ using frequency sampling technique.
(08 Marks)
c. The desired response of a low pass filter is

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cc}
e^{-j 3 w}, & -\frac{3 \pi}{4} \leq w \leq \frac{3 \pi}{4} \\
0, & \frac{3 \pi}{4}<|w| \leq \pi
\end{array}\right.
$$

Determine $\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)$ for $\mathrm{M}=7$ using a Hamming window.
(08 Marks)
8 a. Design an IIR digital filter that when used in the prefilter $A / D-H(z)-D / A$ structure will satisfy the following analog specifications:
(i) L.PF with -1 dB cutoff at $I 00 \pi \mathrm{rad} / \mathrm{sec}$
(ii) Stop band attenuation of 35 dB or greater at $1000 \pi \mathrm{rad} / \mathrm{sec}$
(iii) Monotonic in SB and PB
(iv) Sampling rate 2000 sample/sec

Use Bilinear transformation technique.
(14 Marks)
b. An analog filter has the following system function. Convert this filter into a digital filter using backward difference for the derivative

$$
\begin{equation*}
H(s)=\frac{1}{(s+0 . I)^{2}+9} \tag{06Marks}
\end{equation*}
$$

Fifth Semester B.E. Degree Examination, June/July 2014 Analog Communication

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Define auto correlation function of the random process $x(t)$. Explain the properties of auto correlation function.
(08 Marks)
b. Define the power spectral density and explain its properties.
(07 Marks)
c. The pdf of a random variable is given as
$f_{x}(x)=\left\{\begin{array}{cc}K & a \leq x \leq b \\ 0 & \text { Otherwise }\end{array}\right.$.
Where K is constant,
i) Sketch the pdf and determine value of K.
ii) If $\mathrm{a}=-1$ and $\mathrm{b}=2$, calculate $\mathrm{P}(|\mathrm{x}|) \leq \mathrm{C}$) for $\mathrm{C}=1 / 2$.
(05 Marks)

2 a. Explain the generation of AM wave using square law modulator with relcvant equations and spectrum.
(08 Marks)
b. Explain the working of costas receiver for demodulating DSB-SC wave. (06 Marks)
c. An audio frequency signal $10 \sin 2 \pi 500 t$ is used to amplitude modulate a carrier of $75 \sin 2 \pi \times 10^{6} \mathrm{t}$. Assume modulation index as 0.5 . Find:
i) Side band frequencies.
ii) Amplitude of cach side band.
iii) Band width required.
iv) Total power delivered to a load of 100Ω.
(06 Marks)
3 a. Derive the expression for representing SSB wave containing LSB in time domain. (08 Marks)
b. Define Hilbert transform. Obtain Hilbert transform of the following:
i) $x(t)=A_{c} \cos 2 \pi f_{c} t$
ii) $x(t)=A_{c} \sin 2 \pi f_{c} t$.
(06 Marks)
c. Explain phase discrimination method for generating SSB wave.

4 a. Derive time domain equation for VSB modulated wave containing a vestigial of the lower side band.
(07 Marks)
b. With a neat block diagram, explain the operation of AM super heterodyne receiver.
(06 Marks)
c. What is FDM? Explain the detailed scheme of FDM.
(07 Marks)

PART - B

5 a. With neat circuit diagram, explain direct method of generating FM wave. Also explain feed back scheme for frequeney stabilization of a frequency modulator in direct method.
(12 Marks)
b. An angle modulated signal is represented by $s(t)-10 \cos \left[2 \pi \times 10^{6} t+5 \sin 2000 \pi t+10 \sin \right.$ $3000 \pi t \mid$ volts. Find the following:
i) The power in the modulated signal.
ii) The frequency derivation.
iii) The derivation ratio.
iv) The phase derivation.
v) The approximate transmission band width.
(08 Marks)
6 a. With neat circnit diagram, explain FM domodulation using balanced slope detector.
(08 Marks)
b. Starting from block diagram of pLL obtain its non linear and linear model. Show that output of $p L L$ is scaled version of modulating signal.
(12 Marks)
7 a. Derive the expression for RMS noise voltage at the output of passive RC lowpass filter.
(07 Marks)
b. Define white noise. Give the plot of PSD and auto correlation function of white noise.
(07 Marks)
c. In a communication receiver, the first stage is a tuned amplifier with an available power gain of 20 dB and noise figure of 10 dB . The output of the amplifier is given to mixer stage, whose noise figure is 20 dB . Determine the overall noise figure of the system.
(06 Marks)
8 a. Derive expression for the figure of merit for DSBSC receiver.
(10 Marks)
b. Explain function of pre-emphasis and de-emphasis in FM systems.
(10 Marks)

10 EC 55

Fifth Semester B.E. Degree Examination, June/July 2014 Information Theory and Coding

Time: 3 hrs.
Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. A pair of dice are tossed simultaneously in an experiment outcome first dice is recorded as x_{1} and $2^{\text {nd }}$ dice as x_{2}. If the two events are:
$A_{\{ }\left(x_{1}, x_{2}\right)$ such that $\left.x_{1}+x_{2} \leq 8\right\}: \quad B\left\{x_{1}, x_{2}\right)$ such that $\left.x_{1}>x_{2}\right\}$
Then determine: i) Self information of A and B; ii) Entropy of the experiment. (06 Marks) b. Consider the state diagram of a Markov source:

Fig.Q.1(b)
Determinc: i) State probabilitics: ii) Entropy of each state: iii) Entropy of source. (08 Marks)
c. Discuss: i) Additive property of entropy; ii) Symmetrical property of entropy. (06 Marks)

2 a. Find the minimum number of symbols, ' r ' in the coding alphabet for devising an instantancous code such that $W=\{0,5,5,1,5\}$ device such a code. Where ' W ' represent set of code word of length: $1.2, \ldots . n$.
(06 Marks)
b. Construct a binary code for a souree with five symbols $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}\right\}$ with respective probabilities $\mathrm{P}=\{\cdot 3, \cdot 2, \cdot 2,15, \cdot 15\}$. Determine code efficiency using Shannon`s coding.
(08 Marks)
e. For the given ehannel matrix, calculate. $\mathrm{H}(\mathrm{x}), \mathrm{H}(\mathrm{y})$ and channel capacity given $\mathrm{P}\left(\mathrm{x}_{1}\right)=6$. $P\left(x_{2}\right)=.3$ and $P\left(x_{3}\right)=.1$
$P(y / x)=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right]$.
(06 Marks)

3 a. Design a quarternary and binary source code for the souree shown using Huffman's coding procedure $S=\{s 1 . s 2 . s 3, s 4, s 5, s 6 . s 7\} ; P=\{\cdot 18, \cdot 17, \cdot 16, \cdot 15, \cdot 10, \cdot 08, \cdot 05\}$ also determine code efficiency.
b. Determine channel capacity of a binary erasure channel.

4 a. Consider a random variable " x " wholes PDF' is shown in Fig.Q. 4 (a).

Fig.(Q.4(a)
i) Determine the entropy of the source producing this variable.
ii) If the signal is passed through a linear amplifier of gain 8°. determine entropy of o/p.
(08 Marks)
b. Explain Shannon-Hartley law on channel capacity without proof.
(04 Marks)
c. A CRT terminal is used to enter alphanumeric data in a system. CRT is connected through a telephone with $B . W=3 \mathrm{kHz}$ and $[\mathrm{S} / \mathrm{N}]_{0}-10 \mathrm{~dB}$. Assuming the terminal has 100 characters and data is sent in an independent manner with equal probability:
i) Find average information per character.
ii) Capacity of channel.
iii) Data rate.
(08 Marks)

PART - B

5 a. Deline the terms: i) Burst error: ii) Systematic linear block code: iii) Ralois field: iv) I lamming weight.
(04 Marks)
b. For a systematic (6.3) lincar block code. the parity matrix is $|\mathrm{P}|=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$. Find all possible code vectors and parity check matrix.
(06 Marks)
c. Construct the standard array for example in Fig.Q.5(c). Hence determine correeted vector if received vector, $\quad ~={ }^{\circ} 000011^{\circ}$.
(10 Marks)
6 a. For a (7.4) cyclic code the received vector $\not(x)-0100101$ and the generator polynomial is $g(x)=1+x+x^{3}$. Draw the syndrome calculation circuit and correet the single crror in the received vector also explain operation of circuit.
(10 Marks)
b. For a (7.3) expurgated Hamming eode write the code vector table and draw the encoder circuit if $g(x)=1+x^{2}+x^{3}$.
(10 Marks)
$7 \quad$ Write shorl note an:
a. Burst-error correcting cades.
b. BCII code.
c. Golay code.
d. Shortened cyclie codes.
(20 Marks)
$8 \quad$ Fora(2.1.3) convolutional encoder with $g^{(1)}-[1101] . g^{(2)}=[1011]$.
a. Draw the convolutional encoder block diagram.
b. Write down the stat transition table.
c. Draw the code tree.
d. Find the encoder of produced by msg sequence " 11101 " by traversing through the code tree.
(20 Marks)

10EC56

Fifth Semester B.E. Degree Examination, June/July 2014 Fundamentals of CMOS VLSI

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.
 PART-A

1 a. Write a note on evolution of IC era.
(04 Marks)
b. Explain the basic DC equations used in different regions of operation of MOS device. Identify these regions on V-I characteristics.
(07 Marks)
c. Explain with necessary circuit diagram and expressions, the body effect and how it affects the threshold voltage.
(04 Marks)
d. Find the value of body effect parameter (γ) and the threshold voltage $V_{t h}$, when the applied substrate bias is 3 V . Given $\mathrm{V}_{\mathrm{th}}=0.4 \mathrm{~V}, \mathrm{~N}_{\mathrm{A}}=10^{16} / \mathrm{cm}^{3}$, thermal equivalent voltage $=26 \mathrm{mV}$, $\mathrm{n}_{\mathrm{i}}=1.5 \times 10^{10} / \mathrm{cm}^{3}, \mathrm{t}_{\mathrm{ox}}=40 \mathrm{~nm}, \epsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \epsilon_{\mathrm{r}(\mathrm{si})}=11.9, \epsilon_{\mathrm{r}(\mathrm{ox})}=3.9$, $q=1.6 \times 10^{-19} \mathrm{C}$.
(05 Marks)
2 a. Draw the circuit diagram of a $2 \mathrm{i} / \mathrm{p}$ CMOS NAND gate along with stick diagram. Explain also the working of the circuit.
(08 Marks)
b. Explain how layout optimization can be used for increase in speed with an AND gate circuit and stick diagrams.
(12 Marks)
3 a. Discuss the working, merits and demerits of the following logic structures with two i / p NAND gate realization as an example:
i) Pseudo NMOS logic
ii) Complementary CMOS logic.
(10 Marks)
b. Explain CMOS domino logic with the basic gate and derive the evaluation voltage equation. What are the advantages of this logic?
(10 Marks)
4 a. What is sheet resistance? Explain the steps involved in calculating the sheet resistance of: i) transistor channel, ii) nMOS inverter, iii) CMOS inverter.
(09 Marks)
b. A particular layer of MOS circuit has a resistivity of $10 \mathrm{ohm}-\mathrm{cm}$. A section of this layer is $55 \mu \mathrm{~m}$ long and $5 \mu \mathrm{~m}$ wide and has a thickness of $1 \mu \mathrm{~m}$. Calculate the resistance from one end of this section to the other end. What is the value of Rs.?
(05 Marks)
c. What is the drawback of conventional inverter? How it is overcome using super buffers? Explain the working of inverting and non-inverting super buffers with necessary diagrams.
(06 Marks)

PART-B

5 a. Explain the working of switch logic, pass transistor and transmission gates with their merits and demerits.
(08 Marks)
b. Explain the structural design concept using bus arbitration logic as an example.

6 a. What are the general considerations to be followed in designing a sub system?
b. What are the basic requirements of a shifter? Explain with an example of 4×4 crossbar switch. What are the drawbacks of this basic switch and how it is overcome?
(12 Marks)
7 a. Explain the working of three transistor dynamics RAM cell with circuit and stick diagrams.
(10 Marks)
b. Mention and explain various VLSI design tools used. Also explain different levels at simulation of VLS1 design.
(10 Marks)

